
121

Qing Yan (ed.), Pharmacogenomics in Drug Discovery and Development, Methods in Molecular Biology, 
vol. 1175, DOI 10.1007/978-1-4939-0956-8_7, © Springer Science+Business Media New York 2014

    Chapter 7   

 G Protein-Coupled Receptor Accessory Proteins 
and Signaling: Pharmacogenomic Insights 

           Miles     D.     Thompson     ,     David     E.    C.     Cole    ,     Pedro     A.     Jose    , and     Peter     Chidiac   

    Abstract 

   The identifi cation and characterization of the genes encoding G protein-coupled receptors (GPCRs) and 
the proteins necessary for the processes of ligand binding, GPCR activation, inactivation, and receptor 
traffi cking to the membrane are discussed in the context of human genetic disease. In addition to func-
tional GPCR variants, the identifi cation of genetic disruptions affecting proteins necessary to GPCR 
 functions have provided insights into the function of these pathways. G s α and Gβ subunit polymorphisms 
have been found to result in complex phenotypes. Disruptions in accessory proteins that normally modify 
or organize heterotrimeric G-protein coupling may also result in disease states. These include the contribu-
tion of variants of the regulator of G protein signaling (RGS) protein to hypertension; the role variants of 
the activator of G protein signaling (AGS) proteins to phenotypes (such as the type III AGS8 variant to 
hypoxia); the contribution of G protein-coupled receptor kinase (GRK) proteins, such as GRK4, in disor-
ders such as hypertension. The role of accessory proteins in GPCR structure and function is discussed in 
the context of genetic disorders associated with disruption of the genes that encode them. An understand-
ing of the pharmacogenomics of GPCR and accessory protein signaling provides the basis for examining 
both GPCR pharmacogenetics and the genetics of monogenic disorders that result from disruption of 
given receptor systems.  

  Key words     G protein-coupled receptor  ,   Accessory proteins  ,   G protein-coupled receptor kinases 
(GRK)  ,   Regulator of G protein signaling (RGS)  ,   Activator of G protein signaling (AGS)  ,   Hypertension  , 
  Pharmacogenomics  ,   Signaling  

1      Introduction 

 Pharmacogenomics—the genomics of pharmaceutical targets, 
such as the G protein-coupled receptors (GPCRs)—involves clas-
sifi cation of the genes encoding the proteins that are necessary for 
a pharmaceutical target to function. With respect to the GPCRs 
themselves, there are three subclasses of receptors that are of par-
ticular importance in to pharmacogenomics: class A receptors 
share sequence similarity to rhodopsin and the calcitonin recep-
tor; class B receptors consist of secretin/glucagon-like receptors 
that share little structural similarity to the other classes of GPCRs; 
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class C receptors, such as the calcium sending receptor (CASR), 
which signal as a result of conformational changes in response to 
allosteric ligands [ 1 – 3 ]. The genomic classifi cation of GPCRs 
allows for more accurate prediction of the changes in receptor 
function that may result from sequence variants that occur in 
nature or in vitro. 

 The manner in which GPCRs are able to regulate subtle physi-
ological processes, however, suggests that the specifi city of GPCR 
signaling is also determined by which heterotrimeric G protein, 
effector, and accessory proteins are recruited. The accessory 
 proteins involved in receptor inactivation may be as important as 
the structure and function of a given GPCR. 

 Genetic variations in accessory proteins that disrupt receptor 
function have been identifi ed in nature. Examples include (1) vari-
ants of a regulator of G protein signaling (RGS) protein that confer 
risk for essential hypertension through dopamine D 1   receptor-
mediated kidney function; (2) variants of the  GNAS  gene, which 
encodes Gαs, the ubiquitously expressed Gαs-subunit; (3) variants 
of the Gβ subunits in essential hypertension, obesity, stroke, and 
myocardial infarction; and (4) variants of G protein-coupled receptor 
kinase 4 (GRK4) that alter dopamine D 1  receptor-mediated kidney 
function in essential hypertension. Given their importance, the role 
of accessory proteins in GPCR activation and inactivation is perhaps 
best discussed in the context of representative receptor systems. 

  The largest GPCR subfamily is known as class A. It comprises 
approximately 90 % of all GPCRs [ 1 ]. Members of this class of 
GPCRs have been studied at both the molecular and the structural 
levels [ 1 ]. Identifi cation of the properties of class A receptors has 
resulted in the identifi cation of orphan receptors [ 4 ,  5 ] that have 
become reagents for drug discovery in drug screens [ 5 ]. 

 These receptors share many common features: some of which 
are illustrated by the cysteinyl leukotriene 2 (CysLT2) receptor 
( see  Fig.  1 ) [ 6 ]. These features include (1) insertion into the mem-
brane and targeting to the plasma membrane, (2) the presence of 
seven conserved transmembrane domains, (3) three extracellular 
and three intracellular loops, (4) an extracellular amino terminus, 
and (5) an intracellular carboxyl terminus [ 1 ,  2 ].

   All of the known class A receptors are subject to posttransla-
tional modifi cation at one or more N-linked glycosylation 
sequences, located in either the extracellular amino terminus or in 
the second extracellular loop. Glycosylation is essential for the 
expression of some GPCRs at the plasma membrane [ 7 ,  8 ]. 
Furthermore, many receptors are also subject to other posttransla-
tional modifi cations, such as palmitoylation at the intracellular 
domains [ 9 ]. These palmitoylation sites probably serve to anchor 
the intracellular carboxy tail to the plasma membrane [ 10 ]. 

1.1  The G Protein- 
Coupled Receptors

Miles D. Thompson et al.
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Indeed, X-ray crystallography studies have suggested that the pro-
totypic class A receptor, rhodopsin, may effectively form an addi-
tional helical structure as a result of membrane anchoring [ 11 ,  12 ]. 

 Activation has most often been studied by analyzing the in 
vitro consequences of mutated GPCRs or G protein subunits. 
Receptors targeted by bulky ligands, such as large peptides and 
protein hormones, tend to bind at the N-terminal extracellular 
loops and in the transmembrane domains. Ligands as diverse in 
structure as dopamine and the cysteinyl leukotrienes (CysLT), 
however, bind to their cognate recognition sites within the hydro-
phobic core formed by the membrane-spanning α-helices [ 13 ,  14 ]. 
In the case of the CysLT 2  receptor ( see  Fig.  1 ), naturally observed 
variants have been discovered that alter the region defi ning the 
putative binding pocket (discussed in Chapter   9    ). Thus, multiple 
motifs defi ne the ligand–receptor interaction [ 15 ]. 

 Still other receptors have poorly defi ned binding pockets: they 
accommodate ligands in many orientations and at alternative bind-
ing domains. In addition, many receptors assume different confor-
mations with distinct signaling functions, potentially as a result of 
receptor homo- or hetero-oligomerization. As a result of these and 

  Fig. 1    Schematic representation of the cysteinyl leukotriene 2 (CysLT 2 ) receptor. 
Ribbon model of this family A G protein-coupled receptor (GPCR) is pictured in its 
heptahelical confi guration. The extracellular amino terminus of the receptor, the 
transmembrane domains, and the intracellular carboxyl tail extend behind the 
intracellular palmitoylation site. The putative “binding pocket” for cysteinyl leu-
kotriene ligands is derived from a rhodopsin model       
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other factors, single receptor types may trigger multiple signaling 
pathways, while groups of receptors may all act on a single intracel-
lular signaling cascade [ 3 ,  16 – 18 ]. 

 A special problem arises in assessing the therapeutic relevance 
of receptor families across the genome, as there may be complex 
interactions via multiple closely related receptors that bind a single 
drug in a variety of different ways [ 3 ]. For example, although the 
CysLT 1  and CysLT 2  receptors have a unique rank order of ligand 
potency [ 19 ,  20 ], the fact that their distribution in mast cells 
 overlaps suggests that they need not always act as autonomous 
leukotriene- binding sites [ 21 – 23 ]. 

 Like many GPCRs, the CysLT 1  and CysLT 2  receptors contain 
a number of structures capable of facilitating functional interac-
tions. As reported for other receptors, dimerization or higher order 
oligomerization may occur as the result of posttranslational modi-
fi cation or the interaction between transmembrane domains 
[ 24 ,  25 ], although the functional relevance in vivo is often unclear. 
Oligomers of receptors such as angiotensin II type I [ 26 ,  27 ], M 3  
muscarinic [ 28 ], dopamine [ 29 ,  30 ], and the metabotropic gluta-
mate (mGluR) [ 31 ] may form through a variety of protein–protein 
interactions. These interactions may play a role in modifying the 
orientation of high-affi nity ligand-binding sites [ 31 – 34 ]. The 
effects of naturally occurring GPCR variants on functions relating 
to receptor dimerization and G protein coupling, however, remain 
largely unknown [ 35 – 37 ].   

2    GPCR Signaling 

 Signifi cant advances in the understanding of GPCR structure and 
function have resulted from the identifi cation of particular residues 
critical to the cell signaling that results from ligand binding, recep-
tor activation, and receptor inactivation [ 38 ]. When exposed to 
continuous stimulation by an agonist, GPCRs can trigger a variety 
of negative feedback mechanisms that limit further signaling. The 
process of activation will be reviewed in the context of what is 
known about the genomics of G protein subunits and accessory 
proteins and the human disorders that result from disruption of 
these processes [ 39 ]. 

 Several human disorders result from genetic abnormalities in G 
protein structure. Several involve the imprinted  GNAS  gene, which 
encodes Gαs: a ubiquitously expressed Gα-subunit that couples 
receptors to adenylyl cyclase (AC) to increase cellular levels of the 
second messenger cyclic adenosine monophosphate (cAMP) [ 40 ]. 
Loss-of-function, gain-of-function mutations and imprinting 
effects lead to many clinical phenotypes. Mutations of  GNAT1  
[ 41 ,  42 ] and  GNAT2  [ 43 ,  44 ], which encode the retinal G 
proteins (transducins), cause specifi c congenital visual defects. 

Miles D. Thompson et al.
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Common polymorphisms of the  GNAS  and  GNB3  (which 
encodes Gβ 3 ) genes have been associated with multigenic disorders 
such as hypertension [ 45 ], metabolic syndrome [ 40 ,  46 ], cancer [ 47 ], 
and pseudohypoparathyroidism (PHP) [ 48 ,  49 ]. 

 PHP, a rare heterogeneous genetic disorder characterized by 
end-organ resistance to parathyroid hormone, is discussed further 
in Chapter   8    . Heterozygous inactivating GNAS mutations lead 
to PHP type Ia (PHP-Ia) when maternally inherited, or pseudo-
pseudohypoparathyroidism (PPHP), if paternally derived [ 48 ]. 
To date, only variants of the Gα- and Gβ-subunits of the G protein 
have been implicated in human disease—no Gγ-subunit disrup-
tions have been identifi ed. 

 A general overview of G protein coupling is necessary before a 
description of the G protein, accessory protein, and GPCR variants 
associated with disease is undertaken. 

  The G protein-mediated signal transduction that results from 
GPCR activation by an extracellular agonist takes the form of a 
cascade of intracellular chemical signals. The release of second 
messengers in response to agonist allows an individual ligand 
binding event to be amplifi ed within the cell, a process that accounts 
for the great sensitivity of GPCR signal transduction [ 1 ,  2 ]. 
These pathways, however, can be disrupted when a receptor is 
subjected to natural or in vitro mutation [ 1 ,  50 – 54 ]. 

 Amplifi cation of the signal is an elaborate process that depends 
on specifi c properties of the receptor, which G protein system is 
involved, and on the presence of auxiliary proteins that amplify or 
quench the signal [ 18 ]. A single amino acid variation in GPCR 
sequence can cause a dramatic gain or loss of function: depending 
partly on the G protein species it is able to interact with [ 51 ]. 
When the signal from a receptor with a gain-of-function mutation 
is amplifi ed, pathophysiological dysregulation can result. 
Conversely, when the signal from a receptor with a loss-of-function 
mutation is amplifi ed, signaling activity may be reduced to below 
what would otherwise be considered basal levels [ 16 ,  52 ].  

  In classic models of G protein coupling, the process is often described 
as involving several steps. First, as ligand is bound to the GPCR, the 
GPCR assumes an “activated” conformation. An activated GPCR 
then interacts with an inactive G protein complex, consisting of 
three subunits: the Gα-, Gβ-, and Gγ-subunits. The inactive 
G proteins exist as heterotrimers with one guanosine 5′-diphosphate 
(GDP) bound to each Gα-subunit, while the other two subunits 
together form a stable Gβγ dimer. It is the interaction of an activated 
GPCR with a heterotrimeric G protein that results in an activated, 
or high-affi nity, receptor–G protein complex [ 2 ,  18 ]. 

 The complex subsequently releases GDP, and guanosine 5′-
triphosphate (GTP) binds to the Gα-subunit in its place [ 42 ,  53 ,  54 ]. 

2.1  G Protein 
Coupling: Molecular 
Mechanism of GPCR 
Activation

2.2  G Protein 
Subunits

G Protein-Coupled Receptor Accessory Proteins and Signaling…
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There is evidence supporting a model that allows for the dissociation 
of both the active Gα–GTP and the non-covalently bound 
βγ-heteromeric complex from the receptor–effector complex; how-
ever, other models can also account for these data [ 55 ,  56 ]. Auxiliary 
proteins may regulate the potentiation of the GPCR–G protein 
effector complexes that generate second messengers or specifi c 
transmembrane proteins such as ion channels [ 39 ]. These processes 
are outlined schematically in Fig.  2 .

     The Gβ- and Gγ-subunits (apart from the special case of Gβ5) are 
generally less diverse than the Gα-subunits, however, they have a 
role in both activation and inactivation of GPCRs [ 57 – 59 ]. In 
addition to their essential role in G protein activation, the Gβγ- subunits 

2.3  The G Protein 
G β- and G γ-Subunits

  Fig. 2    Schematic of G protein-coupled receptor (GPCR) activation and inactiva-
tion. Following short-term exposure to agonist, common pathways of GPCR 
desensitization, internalization, and downregulation are initiated. The rapid 
effects, often described as resulting in homologous desensitization, are mostly 
associated with the G protein-coupled receptor kinase (GRK)-mediated phos-
phorylation of agonist-occupied receptor. They are summarized in this schematic 
as follows: ( 1 ) agonist (A) binds to GPCR, initiating conformational changes in the 
receptor, resulting in the recruitment of the regulator of G protein signaling (RGS); 
( 2 ) G protein (α, β, and γ) couples, RGS facilitates guanosine triphosphatase 
(GTPase) activity, and the second-messenger cascade results after Gα binds to 
adenylcylase; ( 3 ) GRK is recruited, displacing enzyme and phosphorylating (PP) 
agonist-occupied receptor; ( 4 ) β-arrestin (βarr) forms a complex with the recep-
tor; ( 5 ) the receptor is internalized at clathrin-coated pits; ( 6 ) internalization 
results in degradation of the endosome-internalized receptor; but ( 7 ) dephos-
phorylated receptor may be recycled to the plasma membrane [ 2 ,  53 ,  114 ].  GDP  
guanosine 5′-diphosphate,  GTP  guanosine 5′-triphosphate       
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bind three classes of GRKs (GRK1, GRK2, and GRK3)—allowing 
translocation of these kinases to the membrane. It is the membrane 
co-localization of GRKs and GPCRs that makes  possible the GRK 
phosphorylation of GPCRs that is integral to the process of 
receptor desensitization [ 60 ]. 

 The diversity in tissue expression of Gβ- and Gγ-subunits also 
plays a role in regulating such processes. Ignoring splice variants, at 
least 4 β-subunits (Gβ1 to Gβ4) and 11 γ-subunits (Gγ1 to Gγ11) 
have been isolated [ 61 ]. The considerable overlap in the distribution 
[ 61 ] of these subunits gives rise to subtle phenotype penetrance.  

  While no variants of the Gβ- and Gγ-subunits have been associated 
with monogenic disorders, polymorphisms have been associated with 
a variety of subtle phenotypes. For example, a single-base 
 substitution (c.825C > T) of the Gβ 3  gene ( GNB3 ) is associated 
with hypertension. The variant leads to alternative splicing, leading 
to a shortened Gβ 3  protein [ 63 ], which may result in enhanced 
G protein signaling [ 63 – 65 ]. 

 While an association between the C825T allele of  GNB3  and 
other features of the metabolic syndrome, including obesity, insu-
lin resistance, autonomic nervous changes, and dyslipidemia have 
often been reported [ 65 – 68 ], some studies have failed to identify 
such phenotypes [ 69 – 72 ]. Beyond this, the polymorphism has also 
been implicated in Alzheimer’s disease [ 73 ], sudden death [ 74 ], 
and tumor progression [ 75 ,  76 ]—as well as being a pharmacoge-
netic marker for drug response [ 64 ,  77 ,  80 ]. The mechanisms linking 
the C825T polymorphism to these various clinical outcomes have 
not been identifi ed. The  GNB3  polymorphisms, however, may 
become a useful markers for disease risk and drug response.  

  All three heterotrimeric G proteins are required for GPCR coupling 
[ 51 ,  52 ]. Moreover once GTP binds both the Gα- and Gβγ- subunits 
can activate effector proteins and ion channels, such as AC, 
phospholipases C, Ca 2+  and K +  channels [ 81 ]. For example, while 
the activated Gαs tends to activate AC [ 82 ,  83 ], Gαi tends to inhibit 
AC, and activated Gαq tends to activate phospholipase C-β [ 39 , 
 84 ]. Variations in receptor structure can change the rate at which G 
protein subunits are liberated. Enhanced or diminished GPCR 
signaling can result from changes in these processes at any step.  

  Since there are more than 20 distinct Gα subunit proteins, their 
activities can be a major determinant of the specifi city of GPCR 
signaling and its variability in both health and disease. By defi nition, 
the characteristics of variant GPCR signaling will depend on the G 
protein subunits co-expressed in tissues or cells. In particular, the 
rate of GTP hydrolysis varies, depending on the type of Gα subunit 

2.4  Gβ-Subunits 
Associated with 
Complex Phenotypes

2.5  The G Protein 
α-Subunits

2.6  Tissue Variability 
of G Protein Subunits 
and GPCR Signaling
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[ 85 ,  86 ] and which if any RGS proteins are present that might be 
targeted to them [ 87 ]. The persistence of the signal depends on 
the rate of guanosine triphosphatase (GTPase) activity, which 
inactivates G protein signaling to restore the low-energy Gα–GDP 
conformation [ 85 ,  86 ]. 

 Four Gα subfamilies, identifi ed by sequence homology, exert a 
physiological infl uence through their expression in different tissues. 
The ~20 different types are categorized into the Gαi, Gαs, Gαq, 
and Gα12 subfamilies. The widely expressed Gαi subfamily, including 
(1) Gα τ1,2 ; (2) the transducins (expressed in rods and cones); (3) 
Gα gust , the gustatory G protein that transduces signals from the 
taste receptors on the tongue; and (4) Gα z , which stimulates cyclic 
guanosine monophosphate (cGMP) phosphodiesterase, inhibits 
AC, and regulates the Ca 2+  and K +  channels. Next is the Gα s  family, 
including Gα s  and Gα olf  (the olfactory G proteins), which stimulate 
AC and regulate both Ca 2+  and K +  channels. Third, is the Gαq fam-
ily, Gα q  and Gα 11,14,15,16 , which activate phospholipase C (PLC), 
p63 RhoGEF, and potentially other effectors [ 88 ]. Finally, there is 
the Gα 12  family, Gα 12  and Gα 13 , which stimulate Rho via certain 
Rho-GEF proteins, adenylyl cyclase (isoform VII), and Na + –H +  
exchangers [ 51 ,  89 – 91 ].  

  The G  αs subunit, encoded by the  GNAS  gene on chromosome 
20q13, is one multiple-gene product that results from alternative 
promoters and exon splicing. This section serves to introduce the 
functions of the  GNAS  gene in the context of a  GNAS  mutation 
that results in testotoxicosis combined with pseudohypo-
parathyroidism type Ia. The phenotype, discussed in Chapter   8     
(Subheading   2.7.1    ), is associated with increased GDP dissociation 
resulting in protein denaturation at normal body temperature, 
while sparing Gs function in the testes [ 49 ]. 

 Gαs is the ubiquitously expressed Gα subunit required for 
receptor-mediated cAMP production. A number of widely distrib-
uted activating variants, such as Arg201Leu, lead to McCune–
Albright’s syndrome (MAS) [ 92 ], in which patients can develop 
fi brous dysplasia (FD) of bone, café-au-lait skin lesions, 
gonadotropin- independent sexual precocity, or tumors (or nodular 
hyperplasia) of pituitary somatotrophs, thyroid, or adrenal cortex 
with associated hormonal oversecretion [ 93 ]. Similar genetic variants 
have been identifi ed in cases of adrenocorticotropin- independent 
macronodular adrenal hyperplasia [ 94 ] and premature breast devel-
opment [ 95 ]. The activating Gαs variants result in various pheno-
types due to constitutive cAMP production [ 92 ]. Inactivating G  αs 
variants lead to Albright’s hereditary osteodystrophy (AHO) in the 
heterozygote, suggesting that Gαs haploinsuffi ciency causes 
the disorder. AHO is characterized by short stature, obesity, 
brachydactyly (shortening of metacarpal and metatarsal bones), 
subcutaneous ossifi cations, and developmental defi cits [ 96 ,  97 ]. 

2.7  G  αs Subunit 
Disrupted in Disease
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The severity of the phenotype, however, is variable, as some patients 
with Gαs mutations have few or no symptoms. 

 The mechanism of Gαs disease in chondrocytes may result 
from insuffi cient parathyroid hormone-related peptide signaling by 
the parathyroid hormone receptor 1 (PTHR1) due to the inability 
of the receptor to activate mutant forms of the G protein. This 
defi ciency may inhibit chondrocyte differentiation within the 
endochondral growth plate [ 98 ,  99 ]. A variety of parathyroid hor-
mone abnormalities can result. 

 The  GNAS1  gene imprinting causes those patients who inherit 
Gαs mutations from their fathers to develop only AHO or pseu-
dopseudohypoparathyroidism (PPHP). On the other hand, those 
who inherit mutations from their mothers develop both AHO and 
resistance to a variety of hormones, including parathyroid hor-
mone (PTH), thyrotropin (TSH; formerly called  thyroid- stimulating 
hormone), growth hormone-releasing hormone, and gonadotro-
pins. This array of hormone resistance resulting from Gαs insuffi -
ciency is known as pseudohypoparathyroidism (PHP) type 1A [ 97 , 
 100 ,  101 ]. Maternal-specifi c inheritance of hormone resistance 
results from expression of Gαs from the maternal allele in tissues 
such as the renal proximal tubule, thyroid, pituitary, and gonads 
[ 102 – 106 ]. In other tissues, where Gαs is not imprinted, however, 
expression of both mutated alleles produces Gαs haploinsuffi ciency, 
leading to the AHO phenotype. 

 Gαs loss-of-function mutations do not always result in pluripo-
tent phenotypes. Those with pseudopseudohypoparathyroidism 
type 1B (PHP1B), for example, have renal PTH resistance without 
AHO or resistance to any other hormone. In fact, Gs function is 
normal in some tissues from PHP1B patients. In such cases, 
imprinting of  GNAS1  exon 1A region determines the transcrip-
tional status of the Gαs promoter in proximal tubules. Loss of this 
imprinting pattern due to the deletion of nearby genes, such as 
STX16 or NESP55, results in the loss of maternal imprinting pat-
tern throughout  GNAS  [ 107 – 109 ]. Since Gαs is usually expressed 
primarily from the maternal allele in renal proximal tubules [ 102 ], 
an abnormal paternal imprinting pattern would lead to Gαs defi -
ciency and renal PTH resistance. It has been proposed that this 
may result from the activation of a repressor(s) due to the effect of 
demethylation, thereby causing the Gαs promoter to cease activity. 
The Gαs defi ciency in affected tissues causes PTH resistance [ 102 ]. 

 The study of activating and inactivating  GNAS1  mutations, 
therefore, has identifi ed tissue-specifi c regulation of GPCR signal-
ing. On one extreme, disruptions to the Gαs subunit, can resemble 
phenotypes caused by numerous constitutively active receptor vari-
ants, while on the other extreme they can resemble complex phe-
notypic patterns of tissue-specifi c receptor inactivation. In addition 
to G protein subunits, accessory proteins also have a signifi cant 
infl uence on the activity of a multitude of receptors.   

G Protein-Coupled Receptor Accessory Proteins and Signaling…
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3    Accessory Proteins 

 The complexity of the disruptions possible in GPCR signaling 
becomes increasingly evident as accessory proteins are studied in 
disease. In addition to the accessory proteins involved in regulating 
the duration of the GPCR signal, such as β-arrestin (reviewed in 
Subheading  4.2 ), other classes of accessory protein facilitate and 
focus GPCR signaling. These proteins include the regulators of G 
protein signaling (RGS) proteins and the activators of G protein- 
signaling (AGS) proteins [ 110 ,  111 ]. While RGS proteins act to 
enhance the GTPase activity of Gα that follows G protein coupling 
[ 87 ,  112 – 114 ], the actions of AGS proteins are receptor indepen-
dent [ 110 ,  111 ]. In selected cases, examples of accessory proteins 
implicated in human disease ( see  Table  1 ) provide an insight into 
signaling pathways.

    The AGS proteins comprise a group of about ten structurally 
diverse proteins that have in common the ability to activate Gβγ- 
dependent signaling, as originally discovered through a yeast-based 
screening system developed by    Lanier and coworkers [ 118 ]. The 
largest subgroup of these, the Group II AGS proteins, includes 
most of the known proteins that contain one or more G protein 
signaling modifi er (GPSM) domains (also referred to as GPR or 
GoLoco domains) [ 119 ]. Such domains bind to a subset of Gαi 
proteins and impede GDP dissociation, and the GPSM proteins 
have been implicated in regulating functions as diverse as 
asymmetric cell division, differentiation, autophagy, receptor 
traffi cking, and addictive behavior [ 118 ]. The remaining Group I 
and III AGS proteins activate signaling by a variety of incompletely 
understood mechanisms and essentially lack any homology with 
one another [ 118 ]. 

 It is thought that AGS proteins may contribute to the patho-
logical GPCR-mediated responses to environmental stressors char-
acteristic to some disease states. Although not a typical example, 
AGS8, a member of group III, has been implicated in remodeling 
the G protein signaling networks of cardiomyocytes that are sub-
jected to hypoxia [ 111 ]. AGS8 is hypoxia inducible and enhances 
GPCR signals by directly interacting with Gβγ. The upregulation 
of AGS8 in hypoxic cardiomyocyte cells is probably major a com-
ponent of the signal remodeling that occurs during ischemic heart 
disease. Thus, the kinase-dependent pathways involved in the col-
lateral growth characteristic of remodeling can be engaged inde-
pendent of GPCR activation. AGS proteins, therefore, represent a 
class of accessory proteins that may be critical to refi ning GPCR 
signaling pathways.  

3.1  Activators of 
G Protein Signaling

Miles D. Thompson et al.
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  The RGS proteins are GTPase accelerating proteins (GAPs) and 
are involved in the inactivation of the signal resulting from the 
coupling of GPCRs to heterotrimeric G proteins. G protein 
deactivation occurs upon the hydrolysis of Gα-bound GTP to GDP. 
As shown in Fig.  2 , the RGS proteins bind directly to activated Gα–
GTP to serve as GAPs. These proteins limit the half-life of Gα–GTP 
by accelerating the GTPase activity of the Gα subunit, thereby 
facilitating the termination of signaling [ 87 ,  112 ,  116 ]. RGS 
polymorphisms have been associated with disease states [ 115 ]. 

 The RGS proteins exemplify the importance of accessory pro-
teins to receptor function [ 115 – 135 ]. In mammals there are 21 
different genes that encode RGS proteins, with several having mul-
tiple splice variants [ 87 ]. These are categorized into four subfami-
lies based on structural and sequence similarities, and as well there 
are a number of related “RGS-like” proteins, some of which can 
also act as GAPs on heterotrimeric G proteins [ 87 ]. All RGS pro-
teins have the ability to promote GTP hydrolysis by members of 
the Gαi subfamily, although RGS2 has uniquely low affi nity for 
these [ 116 ]. About half of the RGS proteins additionally are GAPs 
for Gαq proteins. Gαq GTPase activity is also accelerated by its 
effector phospholipase Cβ [ 121 ]. Similarly the Gα12/13 effectors 
p115-RhoGEF, PDZ-RhoGEF, and leukemia-associated RhoGEF 
(LARG), each of which contains an RGS-like domain, can act as 
GAPs for Gα12/13 [ 113 ,  116 ]. 

 The GTPase activity of Gαs is unaffected by RGS proteins; 
however, some RGS proteins such as RGS2, RGS3, and RGS13 
appear to be able to block Gs-stimulated cAMP production by AC 
[ 116 ]. The inhibition of G protein–effector coupling, absent any 
me   asurable effects on GTPase activity (sometimes referred to as 
“effector antagonism”), has been observed with Gq signaling as 
well. This presumably refl ects the physical disruption of G protein–
effector complexes by RGS proteins [ 87 ]. 

 In solution, the affi nity of RGS proteins for their Gα binding 
partners tends to be increased when the latter are activated, and 
several studies have shown RGS protein localization to the plasma 
membrane to be increased by the presence there of activated G 
proteins [ 116 ]. Other evidence suggests, however, that RGS 
recruitment to the membrane can occur in a manner independent 
of the state of activation of the G protein, and that RGS protein 
binding to phospholipids is also an important consideration in this 
context [ 116 ]. Recruitment may facilitate signal quenching. A 
combination of 30 RGS proteins and 20 Gα subunits allows for a 
diverse pattern of inactivation. RGS proteins, therefore, are 
recruited to the plasma membrane in cells expressing either Gα 
subunits (Gαs) or linked GPCRs in preparation for the GAP activ-
ity that quenches G protein signaling [ 87 ,  114 ]. 

 Regardless of whether or not RGS recruitment depends on the 
activation state of either receptor or G protein, there is evidence 
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that RGS proteins can bind directly to GPCRs [ 116 ]. It thus is 
possible that the receptors recruit RGS proteins nearer to their 
G protein targets [ 117 ]. In other cases, targeting of RGS proteins 
to G proteins may be enhanced via scaffolding proteins, such as 
spinophilin and GIPC, or alternatively by G protein effectors [ 87 ]. 
Thus, the selective sorting of RGS proteins at the plasma mem-
brane through various scaffolding mechanisms may serve to orient 
and optimize their GAP activity toward the linked Gα, shadowing 
their function in regulating G protein function. 

 Insights into GPCR signal termination may suggest strategies 
for designing drugs that selectively optimize RGS activity [ 87 , 
 114 ] in a specifi c disease, such as essential hypertension. As with 
the other systems described, naturally occurring RGS variants may 
alter receptor function by altering the interaction of RGS proteins 
with the receptor.  

  RGS2 preferentially alters Gαq-mediated signaling [ 50 ,  87 ,  116 , 
 121 ,  128 ,  129 ]. In hypertension, this may be particularly relevant 
with respect to the signaling of the angiotensin II type I receptor. 
While the receptor itself has been independently implicated in 
 hypertension because of the 1166A > C variant located in the 3′ 
untranslated region (3′UTR) [ 87 ,  130 ,  131 ], in Bartter’s/
Gitelman’s syndrome (BS/GS) patients, angiotensin II-related 
signaling and vasomotor tone can be blunted independent of the 
3′UTR variant. In BS/GS,  RGS2  gene expression is maximally 
stimulated in BS/GS: suggesting a link between BS/GS genetic 
abnormalities and abnormal vascular tone regulation [ 132 ]. 
Pathogenic effects may result from the failure of RGS2 to regulate 
nitric oxide and cGMP through adequate phosphorylation of 
RGS2 by cGMP-dependent protein kinase 1α (PKG) [ 127 – 129 , 
 132 ].  RGS2  knockout mice exhibit an alteration in smooth muscle 
relaxation that is associated with hypertension [ 128 ,  129 ]. 
Although BS/GS pathogenesis may not be directly attributed to 
 RGS2  variants, these data do provide a better insight into the 
regulation of RGS proteins by Rho inhibition of PKG [ 133 ]. 

 The  RGS2  gene variants are found at various frequencies in 
different populations. Genetic variation in the human  RGS2  gene 
consists of at least 14 single-nucleotide polymorphisms (SNPs) 
and 2 two-base insertion/deletions (in/del; 1891 to 1892 TC 
and 2138 to 2139 AA) [ 115 ,  134 ]. Most coding variants are 
reported at low allelic frequency; however, the C1114G polymor-
phism was associated with lower  RGS2  gene expression in some 
populations [ 135 ]. 

 The intronic 1891 to 1892 TC and 2138 to 2139 AA in/del 
variants, however, are more common. These variants have been 
reported to be in linkage disequilibrium and are associated with 
hypertension in African Americans. Two haplotypes are reported 
to have signifi cantly different frequencies between hypertensives 
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and normotensives—but only among African American groups—
refl ecting the unique epidemiology of essential hypertension in the 
African American population. The intronic in/del haplotypes may 
serve as ethnicity-specifi c genetic variants for essential hyperten-
sion [ 115 ,  134 ]. 

 Various measures suggest that RGS2 expression is reduced in 
these patients. RGS2 messenger RNA (mRNA) expression was sig-
nifi cantly lower in peripheral blood mononuclear cells (PBMC) 
and in fi broblasts from hypertensives in comparison to normoten-
sives. C1114G polymorphism was associated with RGS2 expres-
sion, with the lowest values in GG hypertensives. The 1114G allele 
frequency was increased in hypertensives compared with normo-
tensives. These fi nding suggest that insuffi cient RGS2 expression 
results in a failure to limit the half-life of Gα–GTP that would nor-
mally result from RGS activation of the Gα subunit’s GTPase activ-
ity: preventing the termination of signaling [ 87 ,  112 – 114 ].   

4    Inactivation of GPCRs 

 Whereas continuous exposure of a GPCR to an agonist normally 
produces a self-limited signal [ 39 – 44 ], disease states are often 
characterized by unlimited signaling. Two examples worthy of dis-
cussion are Oguchi disease, caused by disruption of GRK1 inacti-
vation, and essential hypertension associated with GRK4 variants. 
Disruption of GRK activity is discussed with respect to Oguchi 
disease and to essential hypertension in separate discussions in 
Subheading  4.3 . 

 Inactivation, a process that reduces the cellular response to the 
agonist, is illustrated schematically in Fig.  2 . It is often measured 
by quantitating the change in second-messenger production, such 
as cAMP production by AC, following prolonged exposure of one 
type of receptor to an agonist [ 136 ]. The study of natural and arti-
fi cial mutations of GPCRs and the genes encoding proteins 
involved in inactivation, such as GRK1 and GRK4, has identifi ed 
many protein motifs that are essential to the inactivation process. 
Residues that may be involved in the inactivation in the dopamine 
D 1  receptor are shown in Fig.  3 . The contribution of specifi c resi-
dues to these processes is determined by the extent to which the 
signal is limited by the ability of wild-type and mutated GPCRs to 
inactivate in response to agonist [ 137 ].

    The process known as desensitization, taking place within a time 
frame of seconds to minutes following agonist exposure, occurs 
when the receptor uncouples from its G protein. This results 
from conformational changes that result from agonist-dependent 
phosphorylation, often as a result of GRK activity. The 
desensitized receptors undergo plasma membrane clustering and 

4.1  Desensitization

G Protein-Coupled Receptor Accessory Proteins and Signaling…



136

endosome- mediated internalization and are fi nally targeted for 
degradation unless they are recycled back to the cell surface. If 
receptors are lost from the cell surface, down-regulation is said 
to have taken place. This may be transient, in the case of 
intracellular sequestration, or longer term if protein synthesis is 
unable to keep pace with receptor loss [ 39 ]. Two patterns of 
desensitization, homologous and heterologous, have been 
characterized [ 138 ]. While phosphorylation of GPCRs is 
associated with both forms [ 139 ,  140 ], it is the GRK enzymes 
that tend to be implicated in the homologous form that will be 
of interest in discussing the events relevant to Oguchi disease 
and various hypertension phenotypes. 

 Agonist-specifi c desensitization, generally termed homolo-
gous desensitization, is associated with agonist-dependent GRK 
phosphorylation. Originally characterized in the case of rho-
dopsin, it was later found to be common among GPCRs. 

  Fig. 3    Amino acid residues required for receptor desensitization and internalization: the dopamine D receptor 
example. The substitution of 359Glu or 360Thr by Ala results in desensitization- defi cient mutants of the dopa-
mine D1 receptor, but they are still able to internalize to some extent. Phosphorylation sites in a 12-amino acid 
stretch of the distal carboxyl tail (428Thr to 439Thr and 446Thr) may be involved in internalization of the 
receptor. The variant constructs (substitutions by Ala) were generated by site-directed mutagenesis and 
expressed in cultured Chinese hamster ovary (CHO) cells [ 137 ]       
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Homologous desensitization occurs rapidly when GPCRs are 
exposed to high (micromolar) agonist concentrations [ 141 – 143 ]. 
Non-activated receptor systems are spared, however, and con-
tinue to function normally. 

 Historically, heterologous desensitization was described as a 
slower response to agonist (minutes rather than seconds) that 
occurs even when GPCRs are exposed to lower agonist concentra-
tions. It may involve the diminished response of many kinds of 
GPCRs, including receptors that have not been exposed to ligand. 
This appears to occur even if GPCRs share few, if any, common 
signaling pathways or effectors [ 141 – 143 ]. 

 Second-messenger-dependent kinases, such as cAMP- 
dependent protein kinase A (PKA) and protein kinase C (PKC), 
are most often implicated in heterologous desensitization [ 138 ,  144 ]; 
however, the systems involved may vary between cell types [ 145 ]. 
These protein kinases are associated with GPCR desensitization 
that occurs at slower rates than that reported for the GRKs ( t  1/2  of 3 
min compared to 15 s). This probably accounts for the slower time 
course of heterologous desensitization [ 146 ]. For the most part, the 
following discussion centers on homologous desensitization. 

  The desensitization of most GPCRs appears to be dependent on 
the carboxyl tail or third intracellular loop regions. For example, 
the α 2A -adrenergic [ 147 ], the α 1B -adrenergic [ 148 ], the  N -formyl 
peptide [ 149 ], and the M 2  muscarinic acetylcholine [ 150 ,  151 ] 
receptors all contain clusters of residues in the third intracellular 
loop that are required for desensitization. 

 While GRK2, 3, and 5, phosphorylation has been associated 
with agonist activation of many receptors [ 39 ,  152 ], only discrete 
regions of phosphorylation that are attributable to one specifi c 
enzyme appear to be essential for desensitization [ 137 ]. With 
respect to the β 2 -adrenergic [ 153 – 156 ], the dopamine D 1  [ 137 ], 
the μ-opioid [ 157 ], the δ-opioid [ 158 ], the α 1B -adrenergic [ 148 ], 
the A 3  and A 2a  adenosine [ 159 – 161 ], and the  N -formyl peptide 
[ 149 ] receptors, the motifs may be located in the carboxyl tail. 

 The desensitization motifs in the dopamine D 1  receptor, as an 
example, may be at least partly located in the proximal carboxyl tail 
of the receptor [ 137 ]. It is likely that this region interacts with por-
tions of the third intracellular loop in order to promote desensiti-
zation. These structures may also be involved in recycling and 
traffi cking of inactivated receptors [ 162 ,  163 ]. A portion of the 
proximal carboxyl tail of the dopamine D 1  receptor may contain 
some of the residues necessary, but not suffi cient on their own, for 
GRK2 mediated desensitization. A motif consisting of a serine or 
threonine preceded by an acidic amino acid may defi ne the GRK2 
recognition sequence [ 163 ]. 

 For the dopamine D 1  receptor, the 360Thr and preceding 
359Glu may play a role (Fig.  3 ). Normal desensitization of the 
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wild-type dopamine D 1  receptor    (Fig.  4a ), was abolished when the 
Thr360 residue was substituted for Ala ( see  Fig.  4b ). Although 
desensitization appeared intact when other carboxyl terminal ser-
ine and threonine residues were eliminated (Fig.  3 , distal carboxyl 
tail), it was eliminated when the acidic residue present at 359Glu 
was mutated to alanine (data not shown). In this model, the acidic 
359Glu may be necessary to potentiate basal levels of phosphoryla-
tion of the critical 360Thr residue [ 137 ]. In principle, these fi nd-
ings are analogous to evidence suggesting that the rhodopsin 
receptor requires critical acidic residues, such as 341Glu, to main-
tain both basal phosphorylation and agonist-induced phosphoryla-
tion of 338Ser [ 163 ].

   GRK-related mechanisms of agonist-induced desensitization, 
however, are likely to depend on patterns of GRK phosphoaccep-
tors at many serines and threonines [ 38 ,  137 ]—in a barcode-like 

  Fig. 4    In vitro effects of mutation on desensitization and internalization of the dopamine D1 receptor. Shown 
here are effects of mutation on dose-dependent intracellular cyclic adenosine monophosphate (cAMP) accu-
mulation ( a  and  b ) and binding curves ( c  and  d ) for artifi cial ligand (SCH 23390) using three constructs: con-
trols (wild-type,  a  and  c ) and the Thr360Ala mutant (360,  b  and  d ). In the desensitization experiments, cells 
were preincubated with 10 μM dopamine ( open circle ) or vehicle ( closed circle ) for 20 min, and increasing 
concentrations of dopamine (10 −10  to 10 −4  μM) were added to assess cAMP accumulation. Desensitization of 
the wild-type receptor ( a ), defi ned by an increase in  K  m  and decrease in  V  max  for agonist-pretreated compared 
with naïve cells was abolished (with respect to effi cacy and potency) disappeared with the Thr360Ala mutation 
( b ). Conversely, internalization, defi ned as a loss of cell surface receptors (measured by decreased maximal 
binding or  B  max  assessed by SCH23390 binding) is unchanged from wild-type ( c ) after pretreatment with 
10 μM dopamine ( open circle , compared to vehicle  closed circle ), for the Thr360Ala mutation ( d )       
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fashion that may depend on receptor conformation [ 164 ]. There 
is  evidence that phosphorylation of the serines and threonines 
located in the third intracellular loop may, in at least some cases, 
be a co- requisite for desensitization [ 165 ] in many receptors. 
Third-loop mutations exhibit attenuated agonist-induced receptor 
phosphorylation that correlates with an impaired desensitization 
response [ 165 ]. It seems likely that, for some receptors, the role 
of the third loop and the distal proximal tail in desensitization is 
dependent on the complementary structure. This may refl ect a 
requirement for an interaction between the third intracellular 
loop and portions of the carboxyl tail in sustaining agonist-
dependent desensitization that is dependent on GRK phos-
phorylation of the carboxyl tail. Thus, the role of receptor 
phosphorylation may be to create a receptor conformation that 
will allow its interaction with proteins integral to the desensitiza-
tion process [ 3 ,  164 ]. One such group of proteins, indicated in 
Fig.  2 , are the arrestins.   

   GRK-mediated phosphorylation of the receptor is often required to 
promote the formation of the β-arrestin complex that can be 
internalized [ 166 ,  167 ]. The pathway of arrestin-mediated GPCR 
internalization that involves the transfer of ligand-activated receptors 
from the plasma membrane to an intracellular compartment [ 168 ] 
is shown in Fig.  2 . 

 Although internalization is also often described to be a 
phosphorylation- dependent process, Fig.  4c, d  shows that recep-
tors do not always require phosphorylation of the same residues to 
desensitize [ 137 ]—and for the recycling of inactivated receptors to 
the cell membrane [ 162 ]—as they do for receptor endocytosis 
[ 137 ,  162 ]. The process of internalization, however, is integral to 
the membrane traffi cking of GPCRs. The mechanisms that are 
critical to the maintaining the appropriate quantity of receptors at 
the cell surface [ 169 ] can be teased apart using examples from a 
number of different receptors [ 170 ]. 

 In the case of the β 2 -adrenergic receptor, phosphorylation of 
serine and threonine residues in the carboxyl tail can be shown to 
be involved in desensitization and internalization [ 156 ,  171 ]. 
Other GPCRs—such as the μ- and δ-opioid receptors [ 172 ,  173 ] 
and the A2b adenosine receptor [ 174 ]—require analogous serine 
and threonine residues in the carboxyl tail for both desensitization 
and internalization [ 172 ,  173 ]. 

 While reproducible for many receptors, this phenomenon is 
not universal for GPCRs. For example, in the case of the M 2  mus-
carinic receptor, while two-thirds of intracellular loop clusters of 
Ser/Thr residues (286Ser-290Ser and 307Thr-311Ser) mediate 
internalization, only the carboxyl terminal (307Thr-311Ser) clus-
ter mediates desensitization [ 151 ]. In conclusion, internalization 
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may follow desensitization, or it may occur independently [ 175 ] 
with or without the infl uence of other regulatory processes [ 176 ]. 

 For the dopamine D 1  receptor, normal internalization may be 
dependent on distal carboxyl terminal residues ( see  Fig.  3 ) that are 
independent of the 360Thr that may be required for desensitiza-
tion ( see  Fig.  4c, d ). Therefore some, although not all, GPCRs 
show radical dissociation between desensitization and internaliza-
tion. This is found not only in the dopamine D 1  receptor [ 137 ] but 
also in the  N -formyl peptide [ 149 ] and the M 2  muscarinic [ 170 ] 
receptors. 

 Regardless of the GPCR residues involved, the involvement of 
β-arrestin in GPCR internalization has been particularly well eluci-
dated. First, the binding of β-arrestin to the GPCR sterically inhibits 
interaction of the receptor with G proteins [ 177 ]. The displaced 
receptor–β-arrestin complex is then free to bind with high affi nity 
to clathrin chains [ 178 ]. This recruitment of the complex to 
clathrin- coated pits allows the incorporation of the GPCRs into 
lipid vesicles. Internalization follows when the vesicles are pinched 
off the cell membrane by the GTPase dynamin [ 179 – 181 ]. 
Subsequently, the internalized receptors are either recycled back to 
the plasma membrane or are targeted, within days or hours, for 
degradation in lysosomes [ 182 ]. 

 In some cases, for example, in the case of the β 2 -adrenergic 
receptor, internalization has been found to be a precursor to resen-
sitization of the receptor [ 183 ,  184 ]. This phenomenon may be 
common to many GPCRs. Internalization may afford the opportu-
nity of receptor dephosphorylation through the action of an endo-
somic acid phosphatase [ 185 ], resulting in resensitization of the 
receptor [ 186 ]. 

 While it is often convenient to model internalization as a pro-
cess that follows desensitization, the evidence now suggests that, 
although often linked, these processes can be distinct [ 187 ]. For 
some receptors, such as the β 2 -adrenergic receptor [ 153 ], the forms 
of internalization that are distinct from desensitization may include 
those that are arrestin independent. Less is known, however, about 
the pathways of internalization that may not involve arrestin. 

 The residues required for internalization, like those implicated 
in desensitization motifs, do not always meet the requirements for 
putative sites of kinase-mediated phosphorylation. Among the 
numerous motifs that have been implicated, an NPXXY motif 
[ 169 ,  188 ] may be required for agonist-induced activation and 
internalization of the β 2 -adrenergic receptor, and a dileucine motif 
in the carboxyl tail of many GPCRs [ 169 ] may be involved in inter-
nalization of receptors such as the β 2 -adrenergic [ 189 ] and the 
vasopressin V 1a  receptors [ 190 ]. 

 While GPCR phosphorylation at serine and threonine resi-
dues is involved in the internalization pathways of many receptors 
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[ 149 ,  191 – 193 ], it is likely that for some GPCRs internalization 
pathways may be distinct [ 149 ,  191 – 193 ]. These apparently non- 
arrestin mechanisms of internalization, however, may vary more 
between receptors than those identifi ed for GRK-dependent pro-
cesses [ 194 – 195 ].  

   The GRK family consists of seven well-characterized enzymes. 
These enzymes are distinguished by (1) the structural homology 
within the family, (2) the specifi c amino acid sequences that a given 
GRK can phosphorylate, (3) enzyme kinetics [ 184 ,  196 ], and (4) 
GPCR disease phenotypes that are often manifested by dysregulation 
of GRK activity. Gain-of-function GPCR mutations are frequently 
found to be constitutively phosphorylated. Conversely, inadequate 
receptor desensitization and sequestration often result. 

 Much has been learned about GPCR biochemistry from con-
trasting the GRK1-like, GRK2-like, and GRK3-like subfamilies in 
health and disease [ 184 ]. The role of the GRKs is indicated 
 schematically in Fig.  2 . Substrate specifi city of the GRKs may be a 
factor in the degree to which specifi c tissues are affected by delete-
rious GPCR mutations [ 197 ]. Of all the GRK family, the GRK2 
amino acid sequence is most widely divergent from GRK1, which 
may also be a factor in defi ning which tissues are affected by ecto-
pic GPCR phosphorylation [ 163 ]. However, substrate specifi city 
is also defi ned by the amino acid sequence of GPCRs adjacent to 
serine/threonine residues. While GRKs 1 and 2 require adjacent 
acidic residues, respectively, on the carboxyl and amino terminal 
fl anks of the phosphorylation site, GRK4 specifi cally phosphory-
lates at sites adjacent to basic amino acid residues. This evidence 
for GRK substrate specifi city affords us a signifi cant insight into 
the molecular pathology of phenotypes that may involve GRK 
activity [ 184 ]. 

 The GRK1 subfamily, consisting of GRK1 and GRK7, is 
known to be involved in the pathophysiology of deleterious rho-
dopsin mutations that underlie several inherited retinal disorders, 
including Oguchi disease. While GRK1 is the prototypic GRK 
enzyme rhodopsin kinase [ 184 ], both the GRK1 and GRK7 
enzymes are expressed in the retina and act to quench the rhodop-
sin signal transduction after light activation [ 198 ]. The involve-
ment of GRK7 in retinal disease has not been confi rmed. 

 The GRK2 subfamily, consisting of GRK2 and GRK3, acts on 
a wide range of GPCRs that are expressed in many tissues. The 
GRK2 enzymes were fi rst characterized in studies of the phosphor-
ylation of agonist-occupied β 2 -adrenergic receptors [ 184 ]. GRK2 
enzymes contribute to disease. For example, GRK2 gain-of- 
function mutations affect the leuteinizing hormone (LH) recep-
tors that are associated with Leydig cell hyperplasia [ 199 ]. 

 The GRK4 subfamily is best understood in the context of the 
prototypical GRK1 and GRK2 subfamilies [ 184 ]. The GRK4 subfamily 

4.3  The Family 
of GRK Enzymes
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consists of the GRK4, GRK5, and GRK6 enzymes [ 200 ]. In con-
trast to GRK1 and GRK2 enzymes, GRK4 enzymes selectively 
phosphorylate residues with an amino terminal basic amino acid. 
GRK4 has been found to have potential signifi cance in systems as 
well characterized as dopamine D 1  receptor desensitization [ 201 ]. 
In the context of the role of the dopamine D 1  receptor in the kid-
ney, GRK4 enzyme variants are in the subheading that deals with 
phenotypes associated with essential hypertension [ 202 ,  203 ]. 

  Receptors that remain in the activated state even in the absence of 
ligand are often known as constitutively active mutants (CAMs). 
The resulting disruptions in rhodopsin signaling also often result 
in alterations in the phosphorylation of rhodopsin by rhodopsin 
kinase (GRK1), the specialized GRK enzyme expressed in the 
retina that is largely responsible for rapidly desensitizing the 
receptor when it is exposed to light. 

 In fact, a group of rhodopsin-related disorders results from 
mutations in the  GRK1  gene itself. The result is Oguchi disease, a 
rare, recessively inherited retinopathy [ 204 ]. The Oguchi muta-
tions result in the impairment of GRK1-mediated desensitization 
of rhodopsin that is not compensated by normal expression of 
another GRK enzyme, such as GRK7 [ 198 ]. The  GRK1  mutations 
disrupt the pathway of light-dependent rhodopsin phosphoryla-
tion that is normally required for quenching light-induced signal 
transduction in photoreceptor cells. 

 In vitro experiments have demonstrated that a deletion of exon 
5 of the  GRK1  gene is a null mutation that abolishes the enzymatic 
activity of GRK1 [ 204 ]. Because both homozygous and heterozy-
gous states for this mutation lead to disease [ 205 ], it is likely that 
GRK1 integrity is critical to retinal health. As a result of these 
observations, it is possible that a dominant negative effect or a 
 GRK  gene dose effect may be involved in retinal disease. 

 In vivo functional characterization of  GRK1  gene mutations 
has demonstrated that they prevent rhodopsin phosphorylation 
and subsequent arrestin binding. Interestingly, when studied ex 
vivo, rod cells expressing  GRK1  gene mutations also exhibited a 
greatly diminished attenuation of light sensitivity [ 206 ]. Thus, the 
function of GPCRs in healthy tissues may depend on the integrity 
of GRK-dependent processes.  

  The GRKs have been implicated in genetic and acquired 
hypertension because they participate in the desensitization of 
GPCRs, including D 1  receptor and the angiotensin II type I receptor 
[ 201 ,  203 ]. For example, basal GRK-dependent phosphorylation 
of serine residues of the D 1  receptor is increased in the renal 
proximal tubules in animal models as well as in humans with 
essential hypertension. Of the α/β- and γ/δ-isoforms of  GRK4  
expressed in the kidneys, the γ-isoform was found to be 

4.3.1  Oguchi Disease: 
Defective GRK1 
Phosphorylation of 
Rhodopsin

4.3.2  Essential 
Hypertension: GRK4 
Polymorphisms 
and Excessive 
Phosphorylation of the 
Dopamine D 1  Receptor
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polymorphic, confi rming the  GRK4  locus linkage with essential 
hypertension [ 201 ,  202 ]. 

 The  GRK4  SNPs include Arg65Leu, Ala142Val, and 
Ala486Val. Dopamine D 1  receptor-mediated cAMP production is 
reported to be markedly impaired by these variants. Expression of 
these SNPs is also associated with increased basal phosphorylation 
of the dopamine D 1  receptor. This suggests that increased basal 
phosphorylation of the dopamine D 1  receptor by GRK4 may be 
associated with the decreased responsiveness of the dopamine D 1  
receptor in hypertension [ 202 ,  203 ]. 

 In vitro studies suggest that the  GRK4  SNPs impair the func-
tion of D1 receptors, increase blood pressure, and impair the 
diuretic and natriuretic effects of dopamine D 1 -like agonist stimu-
lation. Inappropriate desensitization of the dopamine D 1  receptor 
in renal proximal tubules in hypertension may result in the 
decreased ability of the kidney to eliminate a sodium chloride 
load—a key risk factor in the development of hypertension. 

 The effect of GRK4 disruption is widespread in affected  tissues. 
In addition to abnormal desensitization of the dopamine D 1  recep-
tor, GRK4 polymorphisms are associated with increased expression 
of another regulator of sodium load, the angiotensin II type 1 
receptor. The fi ndings suggest that dysregulation of GPCR systems 
might be corrected by blocking the effects of GRK4 in patients 
who harbor GRK4 polymorphisms. The principle of targeting 
accessory proteins might be applied to other disorders that involve 
disruptions to normal GPCR signaling [ 201 ,  203 ].    

5    Conclusion 

 Insights into the processes of GPCR activation and inactivation 
have developed hand in hand with an appreciation of the accessory 
proteins necessary to these processes. This has accelerated progress 
in understanding the fundamental mechanisms involved in GPCR 
synthesis, transport to the membrane, ligand binding, and activa-
tion and inactivation by GRK-mediated (and other) phosphoryla-
tion [ 207 ]. The catalog of G  αs and Gβ subunit polymorphisms 
that result in complex phenotypes has complemented this effort. 

 Signifi cantly, the study of GPCR accessory proteins has pro-
vided an insight into pathways of disease, such as the contributions 
of RGS proteins to hypertension and AGS proteins to myocardial 
hypoxia. In the case of the GRKs, identifi ed originally in the retina 
as integral to the pathways that involve rhodopsin, proteins such as 
GRK4 have been identifi ed that have been subsequently associated 
with hypertension. These studies show how classical human genet-
ics can become an entrez into the genomics and pharmacogenom-
ics of an entire class of receptors and associated systems.     
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